Section 2.4 The Chain Rule

THEOREM 2.10 The Chain Rule

If y = f(u) is a differentiable function of u and u = g(x) is a differentiable function of x, then y = f(g(x)) is a differentiable function of x and

 $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$

or, equivalently,

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x).$$

PROOF Let h(x) = f(g(x)). Then, using the alternative form of the derivative, you need to show that, for x = c,

$$h'(c) = f'(g(c))g'(c).$$

An important consideration in this proof is the behavior of g as x approaches c. A problem occurs if there are values of x, other than c, such that g(x) = g(c). Appendix A shows how to use the differentiability of f and g to overcome this problem. For now, assume that $g(x) \neq g(c)$ for values of x other than c. In the proofs of the Product Rule and the Quotient Rule, the same quantity was added and subtracted to obtain the desired form. This proof uses a similar technique—multiplying and dividing by the same (nonzero) quantity. Note that because g is differentiable, it is also continuous, and it follows that $g(x) \rightarrow g(c)$ as $x \rightarrow c$.

$$h'(c) = \lim_{x \to c} \frac{f(g(x)) - f(g(c))}{x - c}$$

=
$$\lim_{x \to c} \left[\frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \cdot \frac{g(x) - g(c)}{x - c} \right], \quad g(x) \neq g(c)$$

=
$$\left[\lim_{x \to c} \frac{f(g(x)) - f(g(c))}{g(x) - g(c)} \right] \left[\lim_{x \to c} \frac{g(x) - g(c)}{x - c} \right]$$

=
$$f'(g(c))g'(c)$$

When applying the Chain Rule, it is helpful to think of the composite function $f \circ g$ as having two parts—an inner part and an outer part.

Outer function

$$y = f(g(x)) = f(u)$$

Inner function

The derivative of y = f(u) is the derivative of the outer function (at the inner function *u*) *times* the derivative of the inner function.

$$y' = f'(u) \cdot u$$

Ex.1 Writing the decomposition of a composite function.

$\underline{y} = f(g(x))$	u = g(x)	$\underline{y} = f(u)$
a. $y = \frac{1}{x+1}$	u = x + 1	$y = \frac{1}{u}$
b. $y = \sin 2x$	u = 2x	$y = \sin u$
c. $y = \sqrt{3x^2 - x + 1}$	$u = 3x^2 - x + 1$	$y = \sqrt{u}$
d. $y = \tan^2 x$	$u = \tan x$	$y = u^2$

Ex.2 Find the derivative of $y = 5(2 - x^3)^4$.

THEOREM 2.11 The General Power Rule

If $y = [u(x)]^n$, where *u* is a differentiable function of *x* and *n* is a rational number, then

$$\frac{dy}{dx} = n[u(x)]^{n-1}\frac{du}{dx}$$

or, equivalently,

$$\frac{d}{dx}[u^n] = n u^{n-1} u'.$$

(**PROOF**) Because $y = u^n$, you apply the Chain Rule to obtain

$$\frac{dy}{dx} = \left(\frac{dy}{du}\right) \left(\frac{du}{dx}\right)$$
$$= \frac{d}{du} \left[u^n\right] \frac{du}{dx}.$$

By the (Simple) Power Rule in Section 2.2, you have $D_u[u^n] = nu^{n-1}$, and it follows that

$$\frac{dy}{dx} = n[u(x)]^{n-1}\frac{du}{dx}.$$

Ex.3 Find the derivative of $g(t) = 8\sqrt[4]{9-t^2}$.

Summary of Differentiation Rules			
General Differentiation Rules	Let f , g , and u be differentiable functions of x .		
	Constant Multiple Rule:	Sum or Difference Rule:	
	$\frac{d}{dx}[cf] = cf'$	$\frac{d}{dx}[f \pm g] = f' \pm g'$	
	Product Rule:	Quotient Rule:	
	$\frac{d}{dx}[fg] = fg' + gf'$	$\frac{d}{dx}\left[\frac{f}{g}\right] = \frac{gf' - fg'}{g^2}$	
Derivatives of Algebraic	Constant Rule:	(Simple) Power Rule:	
Functions	$\frac{d}{dx}[c] = 0$	$\frac{d}{dx}[x^n] = nx^{n-1}, \frac{d}{dx}[x] = 1$	
Derivatives of Trigonometric Functions	$\frac{d}{dx}[\sin x] = \cos x$	$\frac{d}{dx}[\tan x] = \sec^2 x$ $\frac{d}{dx}[\sec x] = \sec x \tan x$	
	$\frac{d}{dx}[\cos x] = -\sin x$	$\frac{d}{dx}[\cot x] = -\csc^2 x \frac{d}{dx}[\csc x] = -\csc x \cot x$	
Chain Rule	Chain Rule:	General Power Rule:	
	$\frac{d}{dx}[f(u)] = f'(u) \ u'$	$\frac{d}{dx}[u^n] = nu^{n-1}u'$	

Ex.4 Find the derivative of $y = x^2 \sqrt{16 - x^2}$.

Ex.5 Find on the graph of $f(x) = \sqrt[3]{(x^2 - 1)^2}$ for which f'(x) = 0 and those for which f'(x) does not exist.

Ex.6 Find the derivative of
$$y = \frac{t}{\sqrt{t^4 + 4}}$$
.

Ex.7 Find the derivative of $h(t) = \left(\frac{t^2}{t^3 + 2}\right)^2$.

Trigonometric Functions and the Chain Rule

The "Chain Rule versions" of the derivatives of the six trigonometric functions are as follows.

1

$$\frac{d}{dx}[\sin u] = (\cos u) u' \qquad \qquad \frac{d}{dx}[\cos u] = -(\sin u) u'$$
$$\frac{d}{dx}[\tan u] = (\sec^2 u) u' \qquad \qquad \frac{d}{dx}[\cot u] = -(\csc^2 u) u'$$
$$\frac{d}{dx}[\sec u] = (\sec u \tan u) u' \qquad \qquad \frac{d}{dx}[\csc u] = -(\csc u \cot u) u$$

Ex.8 Applying the Chain Rule to Trigonometric Functions **a.** $y = \sin 2x$ $y' = \cos 2x \frac{d}{dx} [2x] = (\cos 2x)(2) = 2 \cos 2x$ **b.** $y = \cos(x - 1)$ $y' = -\sin(x - 1)$ **c.** $y = \tan 3x$ $y' = 3 \sec^2 3x$

- **Ex.9** Derivatives, Parentheses, and Trigonometric Functions *Find the derivative of the following functions:*
- (a) $y = \cos 3x^2 = \cos(3x^2)$

(b) $y = (\cos 3)x^2$

(c)
$$y = \cos(3x)^2 = \cos(9x^2)$$

(d)
$$y = \cos^2 x = (\cos x)^2$$

Ex.10 Find the derivative of $g(\theta) = 5\cos^2(\pi\theta)$.

Ex.11 Find the derivative of $g(\theta) = \cos \sqrt{\sin(\tan(\pi \theta))}$.

Ex.12 Evaluate the second derivative of $g(\theta) = \tan(2\theta)$ at $\left(\frac{\pi}{6}, \sqrt{3}\right)$.

Ex.13 Find the equation of the tangent line to the graph of $f(x) = 2\sin(x) + \cos(2x)$ at $(\pi, 1)$. Then, find all values of x in $(0, 2\pi)$ at which the graph of f has a horizontal tangent.

Ex.14 Given h(x) = f(g(x)) and s(x) = g(f(x)), use the graphs of f and g to find the following derivatives:

- (a) Find h'(3).
- (b) Find s'(9).

