$\qquad$

## Section 2.4 The Chain Rule

## THEOREM 2.10 The Chain Rule

If $y=f(u)$ is a differentiable function of $u$ and $u=g(x)$ is a differentiable function of $x$, then $y=f(g(x))$ is a differentiable function of $x$ and

$$
\frac{d y}{d x}=\frac{d y}{d u} \cdot \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) g^{\prime}(x) .
$$

PROOF Let $h(x)=f(g(x))$. Then, using the alternative form of the derivative, you need to show that, for $x=c$,

$$
h^{\prime}(c)=f^{\prime}(g(c)) g^{\prime}(c) .
$$

An important consideration in this proof is the behavior of $g$ as $x$ approaches $c$. A problem occurs if there are values of $x$, other than $c$, such that $g(x)=g(c)$. Appendix A shows how to use the differentiability of $f$ and $g$ to overcome this problem. For now, assume that $g(x) \neq g(c)$ for values of $x$ other than $c$. In the proofs of the Product Rule and the Quotient Rule, the same quantity was added and subtracted to obtain the desired form. This proof uses a similar technique-multiplying and dividing by the same (nonzero) quantity. Note that because $g$ is differentiable, it is also continuous, and it follows that $g(x) \rightarrow g(c)$ as $x \rightarrow c$.

$$
\begin{aligned}
h^{\prime}(c) & =\lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{x-c} \\
& =\lim _{x \rightarrow c}\left[\frac{f(g(x))-f(g(c))}{g(x)-g(c)} \cdot \frac{g(x)-g(c)}{x-c}\right], g(x) \neq g(c) \\
& =\left[\lim _{x \rightarrow c} \frac{f(g(x))-f(g(c))}{g(x)-g(c)}\right]\left[\lim _{x \rightarrow c} \frac{g(x)-g(c)}{x-c}\right] \\
& =f^{\prime}(g(c)) g^{\prime}(c)
\end{aligned}
$$

When applying the Chain Rule, it is helpful to think of the composite function $f \circ g$ as having two parts-an inner part and an outer part.


The derivative of $y=f(u)$ is the derivative of the outer function (at the inner function u) times the derivative of the inner function.

$$
y^{\prime}=f^{\prime}(u) \cdot u^{\prime}
$$

Ex. 1 Writing the decomposition of a composite function.

$$
y=f(g(x))
$$

a. $y=\frac{1}{x+1}$

$$
u=g(x)
$$

$$
y=f(u)
$$

$$
u=x+1
$$

b. $y=\sin 2 x$
$u=2 x$
$y=\frac{1}{u}$
$u=3 x^{2}-x+1$
$y=\sin u$
c. $y=\sqrt{3 x^{2}-x+1}$
d. $y=\tan ^{2} x$
$y=\sqrt{u}$
$u=\tan x$
$y=u^{2}$

Ex. 2 Find the derivative of $y=5\left(2-x^{3}\right)^{4}$.

## THEOREM 2.II The General Power Rule

If $y=[u(x)]^{n}$, where $u$ is a differentiable function of $x$ and $n$ is a rational number, then

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

or, equivalently,

$$
\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime} .
$$

(PR00F Because $y=u^{n}$, you apply the Chain Rule to obtain

$$
\begin{aligned}
\frac{d y}{d x} & =\left(\frac{d y}{d u}\right)\left(\frac{d u}{d x}\right) \\
& =\frac{d}{d u}\left[u^{n}\right] \frac{d u}{d x}
\end{aligned}
$$

By the (Simple) Power Rule in Section 2.2, you have $D_{u}\left[u^{n}\right]=n u^{n-1}$, and it follows that

$$
\frac{d y}{d x}=n[u(x)]^{n-1} \frac{d u}{d x}
$$

Ex. 3 Find the derivative of $g(t)=8 \sqrt[4]{9-t^{2}}$.

## Summary of Differentiation Rules

General Differentiation Rules Let $f, g$, and $u$ be differentiable functions of $x$.

| $\frac{\text { Constant Multiple Rule: }}{d}$ | $\frac{\text { Sum or Difference Rule: }}{d}$ |
| :--- | :--- |
| $\frac{d}{d x}[c f]=c f^{\prime}$ | $\frac{d}{d x}[f \pm g]=f^{\prime} \pm g^{\prime}$ |
| $\frac{\text { Product Rule: }}{\frac{d}{d x}[f g]=f g^{\prime}+g f^{\prime}}$ | $\frac{\text { Quotient Rule: }}{d x}\left[\frac{f}{g}\right]=\frac{g f^{\prime}-f g^{\prime}}{g^{2}}$ |

Derivatives of Algebraic Functions Constant Rule: $\frac{d}{d x}[c]=0$
(Simple) Power Rule:
$\frac{d}{d x}\left[x^{n}\right]=n x^{n-1}, \quad \frac{d}{d x}[x]=1$
Derivatives of Trigonometric Functions $\frac{d}{d x}[\sin x]=\cos x$ $\frac{d}{d x}[\tan x]=\sec ^{2} x \quad \frac{d}{d x}[\sec x]=\sec x \tan x$ $\frac{d}{d x}[\cos x]=-\sin x$ $\frac{d}{d x}[\cot x]=-\csc ^{2} x \quad \frac{d}{d x}[\csc x]=-\csc x \cot x$

Chain Rule
Chain Rule: $\frac{d}{d x}[f(u)]=f^{\prime}(u) u^{\prime}$

General Power Rule:
$\frac{d}{d x}\left[u^{n}\right]=n u^{n-1} u^{\prime}$

Ex. 4 Find the derivative of $y=x^{2} \sqrt{16-x^{2}}$.

Ex. 5 Find on the graph of $f(x)=\sqrt[3]{\left(x^{2}-1\right)^{2}}$ for which $f^{\prime}(x)=0$ and those for which $f^{\prime}(x)$ does not exist.

Ex. 6 Find the derivative of $y=\frac{t}{\sqrt{t^{4}+4}}$.

Ex. 7 Find the derivative of $h(t)=\left(\frac{t^{2}}{t^{3}+2}\right)^{2}$.

## Trigonometric Functions and the Chain Rule

The "Chain Rule versions" of the derivatives of the six trigonometric functions are as follows.

$$
\begin{aligned}
\frac{d}{d x}[\sin u] & =(\cos u) u^{\prime} & \frac{d}{d x}[\cos u] & =-(\sin u) u^{\prime} \\
\frac{d}{d x}[\tan u] & =\left(\sec ^{2} u\right) u^{\prime} & \frac{d}{d x}[\cot u] & =-\left(\csc ^{2} u\right) u^{\prime} \\
\frac{d}{d x}[\sec u] & =(\sec u \tan u) u^{\prime} & \frac{d}{d x}[\csc u] & =-(\csc u \cot u) u^{\prime}
\end{aligned}
$$

## Ex. 8 Applying the Chain Rule to Trigonometric Functions

$\xrightarrow{u}$
a. $y=\sin 2 x$

b. $y=\cos (x-1)$
$y^{\prime}=\cos 2 x \frac{d}{d x}[2 x]=(\cos 2 x)(2)=2 \cos 2 x$
$y^{\prime}=-\sin (x-1)$
c. $y=\tan 3 x$
$y^{\prime}=3 \sec ^{2} 3 x$

Ex. 9 Derivatives, Parentheses, and Trigonometric Functions
Find the derivative of the following functions:
(a) $y=\cos 3 x^{2}=\cos \left(3 x^{2}\right)$
(b) $y=(\cos 3) x^{2}$
(c) $y=\cos (3 x)^{2}=\cos \left(9 x^{2}\right)$
(d) $y=\cos ^{2} x=(\cos x)^{2}$

Ex. 10 Find the derivative of $g(\theta)=5 \cos ^{2}(\pi \theta)$.

Ex. 11 Find the derivative of $g(\theta)=\cos \sqrt{\sin (\tan (\pi \theta))}$.

Ex. 12 Evaluate the second derivative of $g(\theta)=\tan (2 \theta)$ at $\left(\frac{\pi}{6}, \sqrt{3}\right)$.

Ex. 13 Find the equation of the tangent line to the graph of $f(x)=2 \sin (x)+\cos (2 x)$ at $(\pi, 1)$. Then, find all values of $x$ in $(0,2 \pi)$ at which the graph of $f$ has a horizontal tangent.

Ex. 14 Given $h(x)=f(g(x))$ and $s(x)=g(f(x))$, use the graphs of $f$ and $g$ to find the following derivatives:
(a) Find $h^{\prime}(3)$.
(b) Find $s^{\prime}(9)$.


